summaryrefslogtreecommitdiff
path: root/scripts/analyze_memory_coverage.py
diff options
context:
space:
mode:
Diffstat (limited to 'scripts/analyze_memory_coverage.py')
-rw-r--r--scripts/analyze_memory_coverage.py103
1 files changed, 103 insertions, 0 deletions
diff --git a/scripts/analyze_memory_coverage.py b/scripts/analyze_memory_coverage.py
new file mode 100644
index 0000000..e7ec498
--- /dev/null
+++ b/scripts/analyze_memory_coverage.py
@@ -0,0 +1,103 @@
+#!/usr/bin/env python3
+"""
+Script to analyze Memory Card coverage statistics.
+"""
+import sys
+import os
+import json
+import numpy as np
+from collections import defaultdict
+
+# Add src to sys.path
+sys.path.append(os.path.join(os.path.dirname(__file__), "../src"))
+
+from personalization.retrieval.preference_store.schemas import MemoryCard
+
+def main():
+ cards_path = "data/personamem/memory_cards.jsonl"
+
+ if not os.path.exists(cards_path):
+ print(f"Error: {cards_path} not found.")
+ return
+
+ print(f"Loading memory cards from {cards_path}...")
+
+ cards_by_user = defaultdict(int)
+ total_cards = 0
+
+ with open(cards_path, "r") as f:
+ for line in f:
+ try:
+ card = json.loads(line)
+ uid = card.get("user_id")
+ if uid:
+ cards_by_user[uid] += 1
+ total_cards += 1
+ except:
+ continue
+
+ # We also need to know the TOTAL number of personas (including those with 0 cards)
+ # We can infer this from the user_vectors file if it exists, or just report on "users with memory"
+ # But better to check contexts file to see denominator
+
+ ctx_path = "data/raw_datasets/personamem/shared_contexts_32k.jsonl"
+ total_personas = 0
+ if os.path.exists(ctx_path):
+ with open(ctx_path, "r") as f:
+ for line in f:
+ data = json.loads(line)
+ total_personas += len(data) # Each line is {hash: [msgs]}? Wait, check format.
+ # personamem_loader says: line is dict {cid: msgs}
+ # So usually 1 per line? Or many?
+ # Let's count keys.
+ else:
+ print("Warning: Context file not found, can't calculate 0-memory users accurately.")
+ total_personas = len(cards_by_user) # Fallback
+
+ users_with_memory = len(cards_by_user)
+ users_without_memory = total_personas - users_with_memory
+
+ counts = list(cards_by_user.values())
+ if users_without_memory > 0:
+ counts.extend([0] * users_without_memory)
+
+ print("\n" + "="*40)
+ print("Memory Coverage Statistics")
+ print("="*40)
+ print(f"Total Personas (Est): {total_personas}")
+ print(f"Total Memory Cards: {total_cards}")
+ print(f"Users with Memory: {users_with_memory} ({users_with_memory/total_personas*100:.2f}%)")
+ print(f"Users w/o Memory: {users_without_memory} ({users_without_memory/total_personas*100:.2f}%)")
+ print("-" * 40)
+
+ if counts:
+ avg_cards = np.mean(counts)
+ median_cards = np.median(counts)
+ max_cards = np.max(counts)
+
+ print(f"Avg Cards/User: {avg_cards:.2f}")
+ print(f"Median Cards/User: {median_cards:.2f}")
+ print(f"Max Cards/User: {max_cards}")
+
+ # Percentiles
+ p25, p75 = np.percentile(counts, [25, 75])
+ print(f"25th Percentile: {p25:.2f}")
+ print(f"75th Percentile: {p75:.2f}")
+
+ print("\nDistribution:")
+
+ # Adjust for exact 0
+ zero_count = counts.count(0)
+
+ print(f" 0 : {zero_count}")
+ # Custom bins for >0
+ non_zero_counts = [c for c in counts if c > 0]
+ if non_zero_counts:
+ hist_nz, edges = np.histogram(non_zero_counts, bins=[1, 5, 10, 20, 50, 1000])
+ for i in range(len(hist_nz)):
+ range_str = f"{int(edges[i])}-{int(edges[i+1]-1)}"
+ print(f" {range_str:<8}: {hist_nz[i]}")
+
+if __name__ == "__main__":
+ main()
+