summaryrefslogtreecommitdiff
path: root/scripts/analyze_memory_coverage.py
blob: e7ec498049f4bde2f52c7f16591a25ea7a23fd1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python3
"""
Script to analyze Memory Card coverage statistics.
"""
import sys
import os
import json
import numpy as np
from collections import defaultdict

# Add src to sys.path
sys.path.append(os.path.join(os.path.dirname(__file__), "../src"))

from personalization.retrieval.preference_store.schemas import MemoryCard

def main():
    cards_path = "data/personamem/memory_cards.jsonl"
    
    if not os.path.exists(cards_path):
        print(f"Error: {cards_path} not found.")
        return

    print(f"Loading memory cards from {cards_path}...")
    
    cards_by_user = defaultdict(int)
    total_cards = 0
    
    with open(cards_path, "r") as f:
        for line in f:
            try:
                card = json.loads(line)
                uid = card.get("user_id")
                if uid:
                    cards_by_user[uid] += 1
                    total_cards += 1
            except:
                continue
                
    # We also need to know the TOTAL number of personas (including those with 0 cards)
    # We can infer this from the user_vectors file if it exists, or just report on "users with memory"
    # But better to check contexts file to see denominator
    
    ctx_path = "data/raw_datasets/personamem/shared_contexts_32k.jsonl"
    total_personas = 0
    if os.path.exists(ctx_path):
        with open(ctx_path, "r") as f:
            for line in f:
                data = json.loads(line)
                total_personas += len(data) # Each line is {hash: [msgs]}? Wait, check format.
                # personamem_loader says: line is dict {cid: msgs}
                # So usually 1 per line? Or many?
                # Let's count keys.
    else:
        print("Warning: Context file not found, can't calculate 0-memory users accurately.")
        total_personas = len(cards_by_user) # Fallback

    users_with_memory = len(cards_by_user)
    users_without_memory = total_personas - users_with_memory
    
    counts = list(cards_by_user.values())
    if users_without_memory > 0:
        counts.extend([0] * users_without_memory)
        
    print("\n" + "="*40)
    print("Memory Coverage Statistics")
    print("="*40)
    print(f"Total Personas (Est): {total_personas}")
    print(f"Total Memory Cards:   {total_cards}")
    print(f"Users with Memory:    {users_with_memory} ({users_with_memory/total_personas*100:.2f}%)")
    print(f"Users w/o Memory:     {users_without_memory} ({users_without_memory/total_personas*100:.2f}%)")
    print("-" * 40)
    
    if counts:
        avg_cards = np.mean(counts)
        median_cards = np.median(counts)
        max_cards = np.max(counts)
        
        print(f"Avg Cards/User:       {avg_cards:.2f}")
        print(f"Median Cards/User:    {median_cards:.2f}")
        print(f"Max Cards/User:       {max_cards}")
        
        # Percentiles
        p25, p75 = np.percentile(counts, [25, 75])
        print(f"25th Percentile:      {p25:.2f}")
        print(f"75th Percentile:      {p75:.2f}")
        
        print("\nDistribution:")
        
        # Adjust for exact 0
        zero_count = counts.count(0)
        
        print(f"  0       : {zero_count}")
        # Custom bins for >0
        non_zero_counts = [c for c in counts if c > 0]
        if non_zero_counts:
            hist_nz, edges = np.histogram(non_zero_counts, bins=[1, 5, 10, 20, 50, 1000])
            for i in range(len(hist_nz)):
                range_str = f"{int(edges[i])}-{int(edges[i+1]-1)}"
                print(f"  {range_str:<8}: {hist_nz[i]}")

if __name__ == "__main__":
    main()