1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
#!/usr/bin/env python3
"""
Script to analyze Memory Card coverage statistics.
"""
import sys
import os
import json
import numpy as np
from collections import defaultdict
# Add src to sys.path
sys.path.append(os.path.join(os.path.dirname(__file__), "../src"))
from personalization.retrieval.preference_store.schemas import MemoryCard
def main():
cards_path = "data/personamem/memory_cards.jsonl"
if not os.path.exists(cards_path):
print(f"Error: {cards_path} not found.")
return
print(f"Loading memory cards from {cards_path}...")
cards_by_user = defaultdict(int)
total_cards = 0
with open(cards_path, "r") as f:
for line in f:
try:
card = json.loads(line)
uid = card.get("user_id")
if uid:
cards_by_user[uid] += 1
total_cards += 1
except:
continue
# We also need to know the TOTAL number of personas (including those with 0 cards)
# We can infer this from the user_vectors file if it exists, or just report on "users with memory"
# But better to check contexts file to see denominator
ctx_path = "data/raw_datasets/personamem/shared_contexts_32k.jsonl"
total_personas = 0
if os.path.exists(ctx_path):
with open(ctx_path, "r") as f:
for line in f:
data = json.loads(line)
total_personas += len(data) # Each line is {hash: [msgs]}? Wait, check format.
# personamem_loader says: line is dict {cid: msgs}
# So usually 1 per line? Or many?
# Let's count keys.
else:
print("Warning: Context file not found, can't calculate 0-memory users accurately.")
total_personas = len(cards_by_user) # Fallback
users_with_memory = len(cards_by_user)
users_without_memory = total_personas - users_with_memory
counts = list(cards_by_user.values())
if users_without_memory > 0:
counts.extend([0] * users_without_memory)
print("\n" + "="*40)
print("Memory Coverage Statistics")
print("="*40)
print(f"Total Personas (Est): {total_personas}")
print(f"Total Memory Cards: {total_cards}")
print(f"Users with Memory: {users_with_memory} ({users_with_memory/total_personas*100:.2f}%)")
print(f"Users w/o Memory: {users_without_memory} ({users_without_memory/total_personas*100:.2f}%)")
print("-" * 40)
if counts:
avg_cards = np.mean(counts)
median_cards = np.median(counts)
max_cards = np.max(counts)
print(f"Avg Cards/User: {avg_cards:.2f}")
print(f"Median Cards/User: {median_cards:.2f}")
print(f"Max Cards/User: {max_cards}")
# Percentiles
p25, p75 = np.percentile(counts, [25, 75])
print(f"25th Percentile: {p25:.2f}")
print(f"75th Percentile: {p75:.2f}")
print("\nDistribution:")
# Adjust for exact 0
zero_count = counts.count(0)
print(f" 0 : {zero_count}")
# Custom bins for >0
non_zero_counts = [c for c in counts if c > 0]
if non_zero_counts:
hist_nz, edges = np.histogram(non_zero_counts, bins=[1, 5, 10, 20, 50, 1000])
for i in range(len(hist_nz)):
range_str = f"{int(edges[i])}-{int(edges[i+1]-1)}"
print(f" {range_str:<8}: {hist_nz[i]}")
if __name__ == "__main__":
main()
|